Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Calcium ; 117: 102839, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38134531

RESUMEN

Ca2+ signaling is essential for cardiac contractility and excitability in heart function and remodeling. Intriguingly, little is known about the role of a new family of ion channels, the endo-lysosomal non-selective cation "two-pore channel" (TPCs) in heart function. Here we have used double TPC knock-out mice for the 1 and 2 isoforms of TPCs (Tpcn1/2-/-) and evaluated their cardiac function. Doppler-echocardiography unveils altered left ventricular (LV) systolic function associated with a LV relaxation impairment. In cardiomyocytes isolated from Tpcn1/2-/- mice, we observed a reduction in the contractile function with a decrease in the sarcoplasmic reticulum Ca2+ content and a reduced expression of various key proteins regulating Ca2+ stores, such as calsequestrin. We also found that two main regulators of the energy metabolism, AMP-activated protein kinase and mTOR, were down regulated. We found an increase in the expression of TPC1 and TPC2 in a model of transverse aortic constriction (TAC) mice and in chronically isoproterenol infused WT mice. In this last model, adaptive cardiac hypertrophy was reduced by Tpcn1/2 deletion. Here, we propose a central role for TPCs and lysosomes that could act as a hub integrating information from the excitation-contraction coupling mechanisms, cellular energy metabolism and hypertrophy signaling.


Asunto(s)
Canales de Calcio , Canales de Dos Poros , Ratones , Animales , Canales de Calcio/metabolismo , Lisosomas/metabolismo , Transducción de Señal , Ratones Noqueados , Cardiomegalia/metabolismo , NADP/metabolismo , Calcio/metabolismo , Señalización del Calcio
2.
PLoS One ; 18(9): e0292015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37733758

RESUMEN

The beta-adrenergic system is a potent stimulus for enhancing cardiac output that may become deleterious when energy metabolism is compromised as in heart failure. We thus examined whether the AMP-activated protein kinase (AMPK) that is activated in response to energy depletion may control the beta-adrenergic pathway. We studied the cardiac response to beta-adrenergic stimulation of AMPKα2-/- mice or to pharmacological AMPK activation on contractile function, calcium current, cAMP content and expression of adenylyl cyclase 5 (AC5), a rate limiting step of the beta-adrenergic pathway. In AMPKα2-/- mice the expression of AC5 (+50%), the dose response curve of left ventricular developed pressure to isoprenaline (p<0.001) or the response to forskolin, an activator of AC (+25%), were significantly increased compared to WT heart. Similarly, the response of L-type calcium current to 3-isobutyl-l-methylxanthine (IBMX), a phosphodiesterase inhibitor was significantly higher in KO (+98%, p<0.01) than WT (+57%) isolated cardiomyocytes. Conversely, pharmacological activation of AMPK by 5-aminoimidazole-4-carboxamide riboside (AICAR) induced a 45% decrease in AC5 expression (p<0.001) and a 40% decrease of cAMP content (P<0.001) as measured by fluorescence resonance energy transfer (FRET) compared to unstimulated rat cardiomyocytes. Finally, in experimental pressure overload-induced cardiac dysfunction, AMPK activation was associated with a decreased expression of AC5 that was blunted in AMPKα2-/- mice. The results show that AMPK activation down-regulates AC5 expression and blunts the beta-adrenergic cascade. This crosstalk between AMPK and beta-adrenergic pathways may participate in a compensatory energy sparing mechanism in dysfunctional myocardium.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Insuficiencia Cardíaca , Ratones , Ratas , Animales , Calcio , Miocitos Cardíacos , Adrenérgicos , Calcio de la Dieta
3.
J Biomed Sci Eng ; 15(5): 140-156, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-36507464

RESUMEN

Recent studies have demonstrated a new role for Klf10, a Krüppel-like transcription factor, in skeletal muscle, specifically relating to mitochondrial function. Thus, it was of interest to analyze additional tissues that are highly reliant on optimal mitochondrial function such as the cerebellum and to decipher the role of Klf10 in the functional and structural properties of this brain region. In vivo (magnetic resonance imaging and localized spectroscopy, behavior analysis) and in vitro (histology, spectroscopy analysis, enzymatic activity) techniques were applied to comprehensively assess the cerebellum of wild type (WT) and Klf10 knockout (KO) mice. Histology analysis and assessment of locomotion revealed no significant difference in Klf10 KO mice. Diffusion and texture results obtained using MRI revealed structural changes in KO mice characterized as defects in the organization of axons. These modifications may be explained by differences in the levels of specific metabolites (myo-inositol, lactate) within the KO cerebellum. Loss of Klf10 expression also led to changes in mitochondrial activity as reflected by a significant increase in the activity of citrate synthase, complexes I and IV. In summary, this study has provided evidence that Klf10 plays an important role in energy production and mitochondrial function in the cerebellum.

4.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743074

RESUMEN

Disturbances in Endoplasmic Reticulum (ER) homeostasis induce ER stress, which has been involved in the development and progression of various heart diseases, including arrhythmias, cardiac hypertrophy, ischemic heart diseases, dilated cardiomyopathy, and heart failure. A mild-to-moderate ER stress is considered beneficial and adaptative for heart functioning by engaging the pro-survival unfolded protein response (UPR) to restore normal ER function. By contrast, a severe or prolonged ER stress is detrimental by promoting cardiomyocyte apoptosis through hyperactivation of the UPR pathways. Previously, we have demonstrated that the NAD+-dependent deacetylase SIRT1 is cardioprotective in response to severe ER stress by regulating the PERK pathway of the UPR, suggesting that activation of SIRT1 could protect against ER-stress-induced cardiac damage. The purpose of this study was to identify natural molecules able to alleviate ER stress and inhibit cardiomyocyte cell death through SIRT1 activation. Several phenolic compounds, abundant in vegetables, fruits, cereals, wine, and tea, were reported to stimulate the deacetylase activity of SIRT1. Here, we evaluated the cardioprotective effect of ten of these phenolic compounds against severe ER stress using cardiomyoblast cells and mice. Among the molecules tested, we showed that ferulic acid, pterostilbene, and tyrosol significantly protect cardiomyocytes and mice heart from cardiac alterations induced by severe ER stress. By studying the mechanisms involved, we showed that the activation of the PERK/eIF2α/ATF4/CHOP pathway of the UPR was reduced by ferulic acid, pterostilbene, and tyrosol under ER stress conditions, leading to a reduction in cardiomyocyte apoptosis. The protection afforded by these phenolic compounds was not directly related to their antioxidant activity but rather to their ability to increase SIRT1-mediated deacetylation of eIF2α. Taken together, our results suggest that ferulic acid, pterostilbene, and tyrosol are promising molecules to activate SIRT1 to protect the heart from the adverse effects of ER stress.


Asunto(s)
Factor 2 Eucariótico de Iniciación , Sirtuina 1 , Animales , Apoptosis , Ácidos Cumáricos , Estrés del Retículo Endoplásmico , Factor 2 Eucariótico de Iniciación/metabolismo , Ratones , Alcohol Feniletílico/análogos & derivados , Sirtuina 1/metabolismo , Estilbenos , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismo
5.
Redox Biol ; 52: 102307, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35398714

RESUMEN

Dietary nitrate supplementation, and the subsequent serial reduction to nitric oxide, has been shown to improve glucose homeostasis in several pre-clinical models of obesity and insulin resistance. While the mechanisms remain poorly defined, the beneficial effects of nitrate appear to be partially dependent on AMPK-mediated signaling events, a central regulator of metabolism and mitochondrial bioenergetics. Since AMPK can activate SIRT1, we aimed to determine if nitrate supplementation (4 mM sodium nitrate via drinking water) improved skeletal muscle mitochondrial bioenergetics and acetylation status in mice fed a high-fat diet (HFD: 60% fat). Consumption of HFD induced whole-body glucose intolerance, and within muscle attenuated insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity (higher apparent Km), submaximal ADP-supported respiration, mitochondrial hydrogen peroxide (mtH2O2) production in the presence of ADP and increased cellular protein carbonylation alongside mitochondrial-specific acetylation. Consumption of nitrate partially preserved glucose tolerance and, within skeletal muscle, normalized insulin-induced Akt phosphorylation, mitochondrial ADP sensitivity, mtH2O2, protein carbonylation and global mitochondrial acetylation status. Nitrate also prevented the HFD-mediated reduction in SIRT1 protein, and interestingly, the positive effects of nitrate ingestion on glucose homeostasis and mitochondrial acetylation levels were abolished in SIRT1 inducible knock-out mice, suggesting SIRT1 is required for the beneficial effects of dietary nitrate. Altogether, dietary nitrate preserves mitochondrial ADP sensitivity and global lysine acetylation in HFD-fed mice, while in the absence of SIRT1, the effects of nitrate on glucose tolerance and mitochondrial acetylation were abrogated.


Asunto(s)
Resistencia a la Insulina , Sirtuina 1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Acetilación , Adenosina Difosfato/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Insulina/metabolismo , Lisina/metabolismo , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Nitratos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
6.
EMBO Mol Med ; 14(5): e12860, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35298089

RESUMEN

Duchenne muscular dystrophy (DMD) is characterized by progressive muscle degeneration. Two important deleterious features are a Ca2+ dysregulation linked to Ca2+ influxes associated with ryanodine receptor hyperactivation, and a muscular nicotinamide adenine dinucleotide (NAD+ ) deficit. Here, we identified that deletion in mdx mice of CD38, a NAD+ glycohydrolase-producing modulators of Ca2+ signaling, led to a fully restored heart function and structure, with skeletal muscle performance improvements, associated with a reduction in inflammation and senescence markers. Muscle NAD+ levels were also fully restored, while the levels of the two main products of CD38, nicotinamide and ADP-ribose, were reduced, in heart, diaphragm, and limb. In cardiomyocytes from mdx/CD38-/- mice, the pathological spontaneous Ca2+ activity was reduced, as well as in myotubes from DMD patients treated with isatuximab (SARCLISA® ) a monoclonal anti-CD38 antibody. Finally, treatment of mdx and utrophin-dystrophin-deficient (mdx/utr-/- ) mice with CD38 inhibitors resulted in improved skeletal muscle performances. Thus, we demonstrate that CD38 actively contributes to DMD physiopathology. We propose that a selective anti-CD38 therapeutic intervention could be highly relevant to develop for DMD patients.


Asunto(s)
Distrofia Muscular de Duchenne , ADP-Ribosil Ciclasa 1 , Animales , Humanos , Ratones , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne/genética , Miocitos Cardíacos/patología , NAD/genética , NAD/uso terapéutico , NAD+ Nucleosidasa/genética , Fenotipo
7.
Cardiovasc Res ; 118(15): 3126-3139, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34971360

RESUMEN

AIMS: Obesity, diabetes, and metabolic syndromes are risk factors of atrial fibrillation (AF). We tested the hypothesis that metabolic disorders have a direct impact on the atria favouring the formation of the substrate of AF. METHODS AND RESULTS: Untargeted metabolomic and lipidomic analysis was used to investigate the consequences of a prolonged high-fat diet (HFD) on mouse atria. Atrial properties were characterized by measuring mitochondria respiration in saponin-permeabilized trabeculae, by recording action potential (AP) with glass microelectrodes in trabeculae and ionic currents in myocytes using the perforated configuration of patch clamp technique and by several immuno-histological and biochemical approaches. After 16 weeks of HFD, obesogenic mice showed a vulnerability to AF. The atrial myocardium acquired an adipogenic and inflammatory phenotypes. Metabolomic and lipidomic analysis revealed a profound transformation of atrial energy metabolism with a predominance of long-chain lipid accumulation and beta-oxidation activation in the obese mice. Mitochondria respiration showed an increased use of palmitoyl-CoA as energy substrate. APs were short duration and sensitive to the K-ATP-dependent channel inhibitor, whereas K-ATP current was enhanced in isolated atrial myocytes of obese mouse. CONCLUSION: HFD transforms energy metabolism, causes fat accumulation, and induces electrical remodelling of the atrial myocardium of mice that become vulnerable to AF.


Asunto(s)
Fibrilación Atrial , Dieta Alta en Grasa , Ratones , Animales , Fibrilación Atrial/etiología , Metabolómica , Metaboloma , Adenosina Trifosfato
8.
Biol Sex Differ ; 12(1): 52, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535195

RESUMEN

BACKGROUND: The AMP-activated protein kinase (AMPK) is a major regulator of cellular energetics which plays key role in acute metabolic response and in long-term adaptation to stress. Recent works have also suggested non-metabolic effects. METHODS: To decipher AMPK roles in the heart, we generated a cardio-specific inducible model of gene deletion of the main cardiac catalytic subunit of AMPK (Ampkα2) in mice. This allowed us to avoid the eventual impact of AMPK-KO in peripheral organs. RESULTS: Cardio-specific Ampkα2 deficiency led to a progressive left ventricular systolic dysfunction and the development of cardiac fibrosis in males. We observed a reduction in complex I-driven respiration without change in mitochondrial mass or in vitro complex I activity, associated with a rearrangement of the cardiolipins and reduced integration of complex I into the electron transport chain supercomplexes. Strikingly, none of these defects were present in females. Interestingly, suppression of estradiol signaling by ovariectomy partially mimicked the male sensitivity to AMPK loss, notably the cardiac fibrosis and the rearrangement of cardiolipins, but not the cardiac function that remained protected. CONCLUSION: Our results confirm the close link between AMPK and cardiac mitochondrial function, but also highlight links with cardiac fibrosis. Importantly, we show that AMPK is differently involved in these processes in males and females, which may have clinical implications for the use of AMPK activators in the treatment of heart failure.


Asunto(s)
Cardiolipinas , Cardiopatías , Animales , Femenino , Fibrosis , Masculino , Ratones , Ratones Noqueados , Mitocondrias
9.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360941

RESUMEN

Phospholipids (PLs) are amphiphilic molecules that were essential for life to become cellular. PLs have not only a key role in compartmentation as they are the main components of membrane, but they are also involved in cell signaling, cell metabolism, and even cell pathophysiology. Considered for a long time to simply be structural elements of membranes, phospholipids are increasingly being viewed as sensors of their environment and regulators of many metabolic processes. After presenting their main characteristics, we expose the increasing methods of PL detection and identification that help to understand their key role in life processes. Interest and importance of PL homeostasis is growing as pathogenic variants in genes involved in PL biosynthesis and/or remodeling are linked to human diseases. We here review diseases that involve deregulation of PL homeostasis and present a predominantly muscular phenotype.


Asunto(s)
Músculo Estriado/metabolismo , Fosfolípidos/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos , Mitocondrias/metabolismo , Músculo Estriado/fisiología , Fosfolípidos/química
10.
Sci Adv ; 7(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523852

RESUMEN

Unbalanced energy partitioning participates in the rise of obesity, a major public health concern in many countries. Increasing basal energy expenditure has been proposed as a strategy to fight obesity yet raises efficiency and safety concerns. Here, we show that mice deficient for a muscle-specific enzyme of very-long-chain fatty acid synthesis display increased basal energy expenditure and protection against high-fat diet-induced obesity. Mechanistically, muscle-specific modulation of the very-long-chain fatty acid pathway was associated with a reduced content of the inner mitochondrial membrane phospholipid cardiolipin and a blunted coupling efficiency between the respiratory chain and adenosine 5'-triphosphate (ATP) synthase, which was restored by cardiolipin enrichment. Our study reveals that selective increase of lipid oxidative capacities in skeletal muscle, through the cardiolipin-dependent lowering of mitochondrial ATP production, provides an effective option against obesity at the whole-body level.

11.
Int J Mol Sci ; 23(1)2021 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-35008448

RESUMEN

Heart failure (HF) is a plague of the aging population in industrialized countries that continues to cause many deaths despite intensive research into more effective treatments. Although the therapeutic arsenal to face heart failure has been expanding, the relatively short life expectancy of HF patients is pushing towards novel therapeutic strategies. Heart failure is associated with drastic metabolic disorders, including severe myocardial mitochondrial dysfunction and systemic nutrient deprivation secondary to severe cardiac dysfunction. To date, no effective therapy has been developed to restore the cardiac energy metabolism of the failing myocardium, mainly due to the metabolic complexity and intertwining of the involved processes. Recent years have witnessed a growing scientific interest in natural molecules that play a pivotal role in energy metabolism with promising therapeutic effects against heart failure. Among these molecules, B vitamins are a class of water soluble vitamins that are directly involved in energy metabolism and are of particular interest since they are intimately linked to energy metabolism and HF patients are often B vitamin deficient. This review aims at assessing the value of B vitamin supplementation in the treatment of heart failure.


Asunto(s)
Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/metabolismo , Complejo Vitamínico B/farmacología , Animales , Suplementos Dietéticos , Metabolismo Energético/efectos de los fármacos , Humanos , Miocardio/metabolismo
12.
Front Cell Dev Biol ; 8: 581045, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134298

RESUMEN

Adult striated muscle cells present highly organized structure with densely packed intracellular organelles and a very sparse cytosol accounting for only few percent of cell volume. These cells have a high and fluctuating energy demand that, in continuously working oxidative muscles, is fulfilled mainly by oxidative metabolism. ATP produced by mitochondria should be directed to the main energy consumers, ATPases of the excitation-contraction system; at the same time, ADP near ATPases should rapidly be eliminated. This is achieved by phosphotransfer kinases, the most important being creatine kinase (CK). Specific CK isoenzymes are located in mitochondria and in close proximity to ATPases, forming efficient energy shuttle between these structures. In addition to phosphotransfer kinases, ATP/ADP can be directly channeled between mitochondria co-localized with ATPases in a process called "direct adenine nucleotide channeling, DANC." This process is highly plastic so that inactivation of the CK system increases the participation of DANC to energy supply owing to the rearrangement of cell structure. The machinery for DANC is built during postnatal development in parallel with the increase in mitochondrial mass, organization, and complexification of the cell structure. Disorganization of cell architecture remodels the mitochondrial network and decreases the efficacy of DANC, showing that this process is intimately linked to cardiomyocyte structure. Accordingly, in heart failure, disorganization of the cell structure along with decrease in mitochondrial mass reduces the efficacy of DANC and together with alteration of the CK shuttle participates in energetic deficiency contributing to contractile failure.

13.
Cells ; 9(2)2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059483

RESUMEN

Many recent studies have demonstrated the involvement of endoplasmic reticulum (ER) stress in the development of cardiac diseases and have suggested that modulation of ER stress response could be cardioprotective. Previously, we demonstrated that the deacetylase Sirtuin 1 (SIRT1) attenuates ER stress response and promotes cardiomyocyte survival. Here, we investigated whether and how autophagy plays a role in SIRT1-afforded cardioprotection against ER stress. The results revealed that protective autophagy was initiated before cell death in response to tunicamycin (TN)-induced ER stress in cardiac cells. SIRT1 inhibition decreased ER stress-induced autophagy, whereas its activation enhanced autophagy. In response to TN- or isoproterenol-induced ER stress, mice deficient for SIRT1 exhibited suppressed autophagy along with exacerbated cardiac dysfunction. At the molecular level, we found that in response to ER stress (i) the extinction of eEF2 or its kinase eEF2K not only reduced autophagy but further activated cell death, (ii) inhibition of SIRT1 inhibited the phosphorylation of eEF2, (iii) eIF2α co-immunoprecipitated with eEF2K, and (iv) knockdown of eIF2α reduced the phosphorylation of eEF2. Our results indicate that in response to ER stress, SIRT1 activation promotes cardiomyocyte survival by enhancing autophagy at least through activation of the eEF2K/eEF2 pathway.


Asunto(s)
Autofagia , Quinasa del Factor 2 de Elongación/metabolismo , Estrés del Retículo Endoplásmico , Sirtuina 1/metabolismo , Animales , Autofagia/efectos de los fármacos , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Isoproterenol/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Proteína Sequestosoma-1/metabolismo , Transducción de Señal/efectos de los fármacos , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , Tunicamicina/farmacología
14.
Acta Physiol (Oxf) ; 228(3): e13394, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31560161

RESUMEN

AIM: Tieg1 is involved in multiple signalling pathways, human diseases, and is highly expressed in muscle where its functions are poorly understood. METHODS: We have utilized Tieg1 knockout (KO) mice to identify novel and important roles for this transcription factor in regulating muscle ultrastructure, metabolism and mitochondrial functions in the soleus and extensor digitorum longus (EDL) muscles. RNA sequencing, immunoblotting, transmission electron microscopy, MRI, NMR, histochemical and mitochondrial function assays were performed. RESULTS: Loss of Tieg1 expression resulted in altered sarcomere organization and a significant decrease in mitochondrial number. Histochemical analyses demonstrated an absence of succinate dehydrogenase staining and a decrease in cytochrome c oxidase (COX) enzyme activity in KO soleus with similar, but diminished, effects in the EDL. Decreased complex I, COX and citrate synthase (CS) activities were detected in the soleus muscle of KO mice indicating altered mitochondrial function. Complex I activity was also diminished in KO EDL. Significant decreases in CS and respiratory chain complex activities were identified in KO soleus. 1 H-NMR spectra revealed no significant metabolic difference between wild-type and KO muscles. However, 31 P spectra revealed a significant decrease in phosphocreatine and ATPγ. Altered expression of 279 genes, many of which play roles in mitochondrial and muscle function, were identified in KO soleus muscle. Ultimately, all of these changes resulted in an exercise intolerance phenotype in Tieg1 KO mice. CONCLUSION: Our findings have implicated novel roles for Tieg1 in muscle including regulation of gene expression, metabolic activity and organization of tissue ultrastructure. This muscle phenotype resembles diseases associated with exercise intolerance and myopathies of unknown consequence.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Músculos/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Metaboloma , Ratones , Ratones Noqueados , Estrés Oxidativo/fisiología , Condicionamiento Físico Animal/fisiología , Succinato Deshidrogenasa/metabolismo , Factores de Transcripción/genética
15.
J Thorac Cardiovasc Surg ; 159(1): 129-140, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30979421

RESUMEN

OBJECTIVE: We aimed to assess the mitochondrial respiratory capacities in the right ventricle in the setting of ventricular remodeling induced by pressure overload. METHODS: Chronic thromboembolic pulmonary hypertension was induced in 8 piglets over a 12-week period (chronic thromboembolic pulmonary hypertension model). Right ventricular remodeling, right ventricular function, and mitochondrial respiratory function were assessed at 3, 6, and 12 weeks after induction of pulmonary hypertension and were compared with sham animals (n = 5). Right ventricular cardiomyocytes and mitochondrial structure were studied in transmission electronic microscopy after 12 weeks. RESULTS: As of 3 weeks, chronic pressure overload induced right ventricular dilatation, right ventricular hypertrophy, and right ventricular dysfunction. Maladaptive remodeling in the chronic thromboembolic pulmonary hypertension model was confirmed by the decrease of right ventricular pulmonary artery coupling and right fractional area change. Mitochondrial functional assays in permeabilized right ventricular myocardial fibers revealed that oxidative phosphorylation capacities (complex I, complex II, and IV of the mitochondrial respiratory chain) were degraded. Furthermore, no change in substrate preference of mitochondria was found in the overloaded right ventricle. There was a good correlation between maximal mitochondrial oxygen consumption rate and right ventricular pulmonary artery coupling (Pearson coefficient r = 0.83). Transmission electronic microscopy analysis showed that the composition of cardiomyocytes was no different between the chronic thromboembolic pulmonary hypertension group and the sham group. However, mitochondrial structure anomalies were significantly increased in the chronic thromboembolic pulmonary hypertension group. CONCLUSIONS: Mitochondrial respiratory function impairment is involved early in the development of right ventricular dysfunction in a piglet model of chronic thromboembolic pulmonary hypertension. Underlying mechanisms remain to be elucidated.

16.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31658614

RESUMEN

Heart failure is associated with profound alterations of energy metabolism thought to play a major role in the progression of this syndrome. SIRT1 is a metabolic sensor of cellular energy and exerts essential functions on energy metabolism, oxidative stress response, apoptosis, or aging. Importantly, SIRT1 deacetylates the peroxisome proliferator-activated receptor gamma co-activator 1α (PGC-1α), the master regulator of energy metabolism involved in mitochondrial biogenesis and fatty acid utilization. However, the exact role of SIRT1 in controlling cardiac energy metabolism is still incompletely understood and conflicting results have been obtained. We generated a cardio-specific inducible model of Sirt1 gene deletion in mice (Sirt1ciKO) to decipher the role of SIRT1 in control conditions and following cardiac stress induced by pressure overload. SIRT1 deficiency induced a progressive cardiac dysfunction, without overt alteration in mitochondrial content or properties. Sixteen weeks after Sirt1 deletion an increase in mitochondrial reactive oxygen species (ROS) production and a higher rate of oxidative damage were observed, suggesting disruption of the ROS production/detoxification balance. Following pressure overload, cardiac dysfunction and alteration in mitochondrial properties were exacerbated in Sirt1ciKO mice. Overall the results demonstrate that SIRT1 plays a cardioprotective role on cardiac energy metabolism and thereby on cardiac function.


Asunto(s)
Cardiopatías/genética , Corazón , Presión , Sirtuina 1/genética , Sirtuina 1/metabolismo , Animales , Ecocardiografía , Fibrosis/patología , Eliminación de Gen , Cardiopatías/metabolismo , Cardiopatías/patología , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Miocitos Cardíacos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Tamoxifeno/efectos adversos
17.
Artículo en Inglés | MEDLINE | ID: mdl-31474941

RESUMEN

Mitochondria are unique organelles present in almost all cell types. They are involved not only in the supply of energy to the host cell, but also in multiple biochemical and biological processes like calcium homeostasis, production, and regulation of reactive oxygen species (ROS), pH control, or cell death. The importance of mitochondria in cell biology and pathology is increasingly recognized. Being maternally inherited, mitochondria exhibit a tissue-specificity, because most of the mitochondrial proteins are encoded by the nuclear genome. This renders them exquisitely well-adapted to the physiology of the host cell. It is thus not surprising that mitochondria show a sexual dimorphism and that they are also prone to the influence of sex chromosomes and sex hormones. Estrogens affect mitochondria through multiple processes involving membrane and nuclear estrogen receptors (ERs) as well as more direct effects. Moreover, estrogen receptors have been identified within mitochondria. The effects of estrogens on mitochondria comprise protein content and specific activity of mitochondrial proteins, phospholipid content of membranes, oxidant and anti-oxidant capacities, oxidative phosphorylation, and calcium retention capacities. Herein we will briefly review the life cycle and functions of mitochondria, the importance of estrogen receptors and the effects of estrogens on heart and skeletal muscle mitochondria.

19.
Int J Mol Sci ; 20(7)2019 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-30934680

RESUMEN

The bromodomain and extra-terminal domain family inhibitors (BETi) are a promising new class of anticancer agents. Since numerous anticancer drugs have been correlated to cardiomyopathy, and since BETi can affect non-cancerous tissues, we aimed to investigate in healthy animals any ultrastructural BETi-induced alterations of the heart as compared to skeletal muscle. Male Wistar rats were either treated during 3 weeks with I-BET-151 (2 or 10 mg/kg/day) (W3) or treated for 3 weeks then allowed to recover for another 3 weeks (W6) (3-weeks drug washout). Male C57Bl/6J mice were only treated during 5 days (50 mg/kg/day). We demonstrated the occurrence of ultrastructural alterations and progressive destruction of cardiomyocyte mitochondria after I-BET-151 exposure. Those mitochondrial alterations were cardiac muscle-specific, since the skeletal muscles of exposed animals were similar in ultrastructure presentation to the non-exposed animals. I-BET-151 decreased the respiration rate of heart mitochondria in a dose-dependent manner. At the higher dose, it also decreased mitochondrial mass, as evidenced by reduced right ventricular citrate synthase content. I-BET-151 reduced the right and left ventricular fractional shortening. The concomitant decrease in the velocity-time-integral in both the aorta and the pulmonary artery is also suggestive of an impaired heart function. The possible context-dependent cardiac side effects of these drugs have to be appreciated. Future studies should focus on the basic mechanisms of potential cardiovascular toxicities induced by BETi and strategies to minimize these unexpected complications.


Asunto(s)
Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/ultraestructura , Animales , Electrocardiografía , Corazón/efectos de los fármacos , Corazón/fisiopatología , Masculino , Ratones Endogámicos C57BL , Mitocondrias Cardíacas/efectos de los fármacos , Especificidad de Órganos , Ratas Wistar
20.
Cardiovasc Res ; 115(2): 328-342, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30084984

RESUMEN

Aims: Endoplasmic reticulum (ER) stress has recently emerged as an important mechanism involved in the pathogenesis of cardiovascular diseases. However, the molecular mechanisms by which ER stress leads to cardiac dysfunction remain poorly understood. Methods and results: In this study, we evaluated the early cardiac effects of ER stress induced by tunicamycin (TN) in mice. Echocardiographic analysis indicated that TN-induced ER stress led to a significant impairment of the cardiac function. Electron microscopic observations revealed that ultrastructural changes of cardiomyocytes in response to ER stress manifested extensively at the level of the reticular membrane system. Smooth tubules of sarcoplasmic reticulum in connection with short sections of rough ER were observed. The presence of rough instead of smooth reticulum was increased at the interfibrillar space, at the level of dyads, and in the vicinity of mitochondria. At the transcriptional level, ER stress resulted in a substantial decrease in the expression of the major regulator of mitochondrial biogenesis PGC-1α and of its targets NRF1, Tfam, CS, and COXIV. At the functional level, ER stress also induced an impairment of mitochondrial Ca2+ uptake, an alteration of mitochondrial oxidative phosphorylation, and a metabolic remodelling characterized by a shift from fatty acid to glycolytic substrate consumption. Conclusions: Our findings show that ER stress induces cytoarchitectural and metabolic alterations in cardiomyocytes and provide evidences that ER stress could represent a primary mechanism that contributes to the impairment of energy metabolism reported in most cardiac diseases.


Asunto(s)
Estrés del Retículo Endoplásmico , Cardiopatías/metabolismo , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Ácidos Grasos/metabolismo , Glucólisis , Cardiopatías/inducido químicamente , Cardiopatías/patología , Cardiopatías/fisiopatología , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Ratones , Mitocondrias Cardíacas/ultraestructura , Miocitos Cardíacos/ultraestructura , Factor 1 Relacionado con NF-E2/genética , Factor 1 Relacionado con NF-E2/metabolismo , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Transducción de Señal , Tunicamicina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...